Link to Wired.com article
"All models are wrong, but some are useful."
So proclaimed statistician George Box 30 years ago, and he was right. But what choice did we have? Only models, from cosmological equations to theories of human behavior, seemed to be able to consistently, if imperfectly, explain the world around us. Until now. Today companies like Google, which have grown up in an era of massively abundant data, don't have to settle for wrong models. Indeed, they don't have to settle for models at all.
At the petabyte scale, information is not a matter of simple three- and four-dimensional taxonomy and order but of dimensionally agnostic statistics. It calls for an entirely different approach, one that requires us to lose the tether of data as something that can be visualized in its totality. It forces us to view data mathematically first and establish a context for it later. For instance, Google conquered the advertising world with nothing more than applied mathematics. It didn't pretend to know anything about the culture and conventions of advertising — it just assumed that better data, with better analytical tools, would win the day. And Google was right.
Scientists are trained to recognize that correlation is not causation, that no conclusions should be drawn simply on the basis of correlation between X and Y (it could just be a coincidence). Instead, you must understand the underlying mechanisms that connect the two. Once you have a model, you can connect the data sets with confidence. Data without a model is just noise.
But faced with massive data, this approach to science — hypothesize, model, test — is becoming obsolete. [Consider biology:] the models we were taught in school about "dominant" and "recessive" genes steering a strictly Mendelian process have turned out to be an even greater simplification of reality than Newton's laws. The discovery of gene-protein interactions and other aspects of epigenetics has challenged the view of DNA as destiny and even introduced evidence that environment can influence inheritable traits, something once considered a genetic impossibility.
In short, the more we learn about biology, the further we find ourselves from a model that can explain it.
There is now a better way. Petabytes allow us to say: "Correlation is enough." We can stop looking for models. We can analyze the data without hypotheses about what it might show. We can throw the numbers into the biggest computing clusters the world has ever seen and let statistical algorithms find patterns where science cannot.
Link to Arstechnica's response
Correlations are a way of catching a scientist's attention, but the models and mechanisms that explain them are how we make the predictions that not only advance science, but generate practical applications. One only needs to look at a promising field that lacks a strong theoretical foundation—high-temperature superconductivity springs to mind—to see how badly the lack of a theory can impact progress.
Tuesday, June 24, 2008
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment